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SINGULAR EXTREMALOIDS IN OPTIMAL CONTROL THEORY
AND THE CALCULUS OF VARIATIONS.

By Terry A. Straeter

Research Assistant, North Carolina State University,
Raleigh, North Carolina

The relationships of the various definitions proposed by Kelley, Dunn, Haynes
and Hermes of the concept of singularity of an extremaloid obtained from the
application of Pontryagin's principle are demonstrated. Also discussed is how
the various definitions are related to the definition of a singular extremaloid
of a Lagrange problem for those instances where the control problem can be

formulated as an equivalent Lagrange problem.



INTRODUCTION

Kelley, Haynes, Hermes and Dunn have proposed various definitions of th-
concept of singularity as applied to controls that are obtained from an application
of Pontryagin's principle to optimal control problems.

It is the purpose of this paper to demonstrate how these definitions are
related and, specifically, how they are related to the definition of a singular
extremaloid of a Lagrange problem for those instances where the control problem
can be formulated as a Lagrange problem.

Section 1 is devoted to a review of the classical problem of Lagrange. In
section 2 we have shown that Kelley's ([4]) definition of a singular control is
equivalent to the definition of a singular extremaloid of a Lagrange problem if
the control region is open. Section 3 exhibits the equivalence of a singular
extremal in the Haynes-Hermes sense ([8]) and a singular extremaloid of the
corresponding Lagrange problem formed by a transformation of the type discussed
by Park ([5]). The same objective is accomplished in section 4 by using slack
variables and a formulation of the control problem given by Berkovitz ([6]).
Section 5 discusses the relationship between Dunn's definition for a singular
extremaloid and the Haynes-Hermes definition in the case of a linear problem.
Also in thds section the relationship of Dunn's definition and the classical

definition for a Lagrange problem is discussed.



ANALYSTIS

" 1. The Classical Problem of Lagrange and the Definition of Singularity in the

Calculus of Variationms.

The problem of Lagrange is that of finding in the class of piecewise smooth
functions y = (yl(t), yz(t), ey yn(t)) satisfying differential equations of the
form

¢i(tsy,y') = 0, (i=1, 2, .v., m < n),

with some or all of the yi's fixed initially and/or terminally, the one which

t2
J f(t,y,y")dt.

t
1

Let R denote the open region of the (2n + 1) dimensional (t,y,y')-space in

minimizes the functional J

which the functions ¢; and f have continuous partial derivatives of at least

second order. Suppose y = y(t) is the solution to this problem, all its lineal

89,
Byj T

portion of v = y(t) satisfies the multiplier rule, ([1], [2]), i.e., there is

elements lie in R, and has rank m along vy = y(t). Then, every smooth

associated with y = y(t) a set of piecewise continuous functions (XO, cooy Xm) #

(0, 0, ..., 0), so that the Mayer equations

d
h =—-——nh i=1, 2, ..., n,
m
where h = —xof + Z Aj045 are satisfied by every smooth portion of y = y(t).
i=1

Any smooth portion of y = y(t) which satisfies the above stated multiplier rule
is called an extremal arc. y = y(t) itself, when pieced together from extremal

arcs is called an extremaloid, and when smooth, an extremal.

Definition 1l: An extremaloid E is said to be "Calculus of Variations Regular" if

the Jacobian
a(h_,, ¢)
=— - #0
v',2)

3



along E. An extremaloid E defined on an interval I is "Calculus of Variationms

3(h_1,9)
Singular" if —7 =0 along E on some subinterval of I. It is well known
3(y",2)

that if an extremaloid is calculus of variations regular then it has no cornetrs
(i.e.. is smooth).

We have three classes of extremaloids: 1. Regular, where J # 0 along the
entire extremal. 2. Extremaloilds with corners where J = 0 conly at isolated points
and 3. Singular, where J = 0 on some subinterval (tl’tz)‘

For future reference

h , , o,
3(h_,,0) vy y
ARSI

¢+ 0
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2. The Problem of Optimal Control and the Pontryagin Principle.

The usual type problem in the theory of optimal control is to minimize

te

J[ul = J

fo(x,u,t)dt subject to constraining differential equations xi = fi(x,u,t)

to

with some or all components of x specified initially and/or terminally. Here, the

fi : Ek x EY x E » E, i=0, 1, ..., k are assumed to have continuous second order

partial derivatives and x = (xl, Koy eeey xk) € X where X is an open subset of Ek

and u = (ul, U5 eees ur)C: U where U is a given subset of E'. The necessary

condition that a sectionally continuous function u = u(t) with values in U render

J a minimum is given by the Pontryagin principle ([2], [3]), namely, that there

k+1

exist sectionally smooth functions (AO,A(t)) € E with (AO.A(t)) 4 0 and where

AO is a constant such that if

ALt

H(x,u,A,t) = Aofo + £

I e~

i 1

then (1) H(x,u,),t) < H(x;u,),t) for all wuedl



We omit transversality conditions as they are not involved in any of the
following discussion concerning singular arecs.

It is clear that if the set U given above is open then the preceeding
problem can be considered as a Lagrange problem with b, = xi - fi(x,u,t). It has
been shown that in this case the maximum principle implies the multiplier rule
and Weierstrass' necessary condition for the Lagrange problem [2] and [3].

For this problem we have

k
h = -Aof (x,u,t) +-. z _ Ai(xi - fi(x,u,t))

i=1

where we now have h = h(x,u,t,A) instead of h = h(y,y',t,A). Then

hx'x' hx'u 0 0
h = —
y'y!
h h 0 h
ux uu uu
where we let (yi, ceny y;) = (X] 5 eoes xé, Ugs eees ur) and
of
byr = (T x g | =50 )
Hence
0 0 I
B(y',}\) uu u
of
I ~ 3a 0
which is different from zero iff det |h_| # 0. Since |det |h_ || = |det |H || we
uu uu uu

call a solution of the maximum principle regular in the classical sense if

det lHqu # 0 ([4]).

3. The concept of a singular arc in the case of the linear optimal control
problem with a right parallelepiped as control region.
Suppose that the system of constraining equations for the optimal control

problem of section 2 is of the form x' = A(x,t) + B(x,t)u where x and u are k and



r vectors respectively, A(x,t) is a n vector valued function, and B(x,t) is a

k x r matrix valued function satisfying suitable conditions so that A(x,t) + B(x,t)u
satisfies the hyﬁéﬁheses of section 2., Further let U be of the form a; :_ui f;bi
(i.e., a right parallelepiped). Suppose further that fo(x,u,t) = a(x,t) + by(x,t) * u
where a(x,t) is a real valued function and bo(x,t) is a vector valued function

which satisfy the differentiability requirements set forth in section 2. Under

these conditions the Hamiltonian H is linear in u and the optimal control (if it

exists) is necessarily of the form

u, = %-[sgn(si(X.X,t)) = 1][bi - ai] +b

i i

= 1 'th
when si(x,l,t) # 0, where si(x,k,t) ABi + Aoboi where Bi is the i column of
the B matrix, (si(x,k,t) is called the switching function), and
1 a >0
sgn(a) = (-1 a <0

undefined for o = 0.

" In 1963, Haynes and Hermes published a precise definition of singular arcs
for this class of problems ([8]). Since we are interested in piecewise continuous

controls the definition stated below for a singular control is modified accordingly.

Definition 2: (Haynes-Hermes) Let T'(%) denote the set I'(R) = {(A,x,t)!so(k,x,t) = 0}

T

and let T = r{2). Then an extremaloid (A(t), x(t)) given on an interval I is
2 =1

said to be "singular" if the set B = {t | t € T and (A(t),x(t),t) € I'} contains an

open interval,
S let (ai ’ bi) + (bi _ ai) sin y!¢
uppose we le 3 5 Ytk

= u for i =1, 2, ..., r and
let y, = x,, 1 =1, 2, ..., ke Then the problem has been transformed into a

i i
classical problem of Lagrange [5] and the multiplier rule yields as a necessary

condition that



=

yi+k = E-sgn(si(x,k,t)) whenever s #0 (&)

where si(x,k,t) is as given above,

a(h_,y,59)

Let us consider the Jacobian 5G0 for this Lagrange problem. Here we
’

have
0 0
Byryr =
0 h_, '
Y141 j+k
= _ar MY -
+
80
0 0 I
a(h_1,9)
.._._‘X—-—-—- = 0 (h ] [} ) FT .
3(y'»A) Y1427 54
I F 0
This determinant is equal to det {h_, h_, and h_, ' =
Yivk® T4k Vi 27 4k
(b, - a,) '
- Gij si(x,x,t) 5 sin Yokt That is (hyi+k’ y3+k) is a diagonal matrix

b, - a,
with elements - si(x,l,t) sin yi+k [—3;——-45] . Hence

2
3(h._y,9) r T ' . bi - a;
TS B s . L s;(x,0,8) siny;y | — 5 (3.2)

Suppose an extremaloid of the linear control problem is singular in the
Haynes-Hermes sense, then we have one of the s; (i.e., switching function) is

zero on sqme open interval. Notice that if one of the s; is zero on an interval

3(h_,,9) ACh_vy¢)
the Jacobian =——— = 0 by (3.2). Moreover we see that ——J— is zero
a(y’,1) 3(y',2)

whenever si(x,l,t) = 0 for some 1, And if no si(x,x,t) = 0 then by using (3.1)

3(h_y59)
we see sin (yi+k) =+ 1 #.0, which using (3.2) implies that 3?§¥—i3_ # 0.
]

- s e it L a7 L
- T h A s T - e



h .,
a( $)

Theorem 1: YCLRY)

0 if and omnly if si(x,l,t) =0 for some i = 1, 2, ..., T.

Corollary The concept of a singular extremaloid by Haynes—Hermes for the control
problem linear in u with a right parallelepiped as control region and for the

associated Lagrange problem are equivalent.

4., Slack Variables and the linear control problem with a closed parallelepiped
as a control region.

The linear control problem discussed in section 3 can be transformed into an
equivalent Lagrange problem by introducing slack variables. The necessary conditions
for optimality in this case are given by Berkowitz ([6]). We shall use his notation

and let u, = yi i=1, 2, ..., r and we define

1y = o' -
Ri(y) i T3y

1y - — ot
Ripe (') = by ~ 3.

So the constraining differential equations become in terms of the slack variables £

x' - A(x,t) - B(x,t)y' =0

’ (4.1)
' - =
gi Ri 0
fori=1, 2, ..., r, r+1, ..., 2r. The h function is given by
2r
h = -2 (a(x,t) + b (x,t) * y') + 1 « (x' - Alx,t) - B(x,0)y") + ) u,(E!2 -R,),
0 0 LIS et 1

where the A's are the multipliers associated with the first k comstraining equatioms
and the pu's those associated with the last 2r equations in (4.1).
Now the Jacobian which determines regularity is in this case

S = 3(hxt9hyv shgr: x' - A(x,t) - B(x,t)y’, (g:;_z - Ri))

3(x”y"£' s)*,l-l)



By taking the appropriate partials we see that

k T r T k r r

k 0 0 0 0 Ik 0 0

r 0 0 0 0 -B —Ir + Ir

S = r 0 0 d(Zui) 0 0 d(ZEi) 0
T 0 0 0 d(2ui+r) 0 0 d(2£i+r)

k Ik -B 0 0 0 0 0

- 14
r 4] Ir d(ZEi) 0 0 0 0
1
r 0 + Ir 0 d(2€i+r) Q 0 0

where d(ai) denotes a diagonal matrix with the a, as diagonal entries.

We expand S with respect to the first k rows and the first k columns and obtain

0 0 0 -I_ I
0 d(2u,) 0 d(2g}) 0
s =| 0 0 d(2uy,.) 0 (e}, )
I, d(2g)) 0 0 0
I 0 d(ag;+r) 0 0

Next, add the 4r + jth column to the 3r + 5th column and do the same for the corres-

ponding rows, j =1, 2, ..., r; and we have

0 0 0 0 T
r
0 d(2ui) 0 d(ZEi) 0

s =10 0 d(Zui+r) d(25i+r) d(25i+r)
0 d(25i> d(2€£+r) 0 0
L, 0 d(2£i+r) 0 0




Expanding with respect to the 15t r rows and then the 15t r columns we obtain

d(Zui) 0 d(ZEi)
s = 0 d(2ui+r) d(2€£+r) (4.2)
d(ZEi) d(2€£+r) 0

From the multiplier rule, it is necessary that

1
1 = e - -

Vi =% (sgn (si) 1)(bi ai) + bi 4.3)
when s; # 0 where s, are the switching functions as defined in section 2. Berkowitz
showed that hy' = (Q; that is, ~ (Aob 4+ AB) 4+ Ry, = 0 since Ry, = (Ir l - If) and
- (Ao bi + Ao Bi) = ~ 8;, we can say that for 4 = 1, 2, ..., T

T8ty My, =0 (4.4)

Now suppose 84 #0fori=1, 2, ..., r« We can assume without loss of

generality that sy >0 fori=1, 2, ..., r. So then (4.3) implies that y:{_ = bi

]

and R, = 0 and R b, - a, # 0. Berkowitz has shown that it is necessary
itr i i i

that My Ri = 0. So, wy = 0 and (4.4) imply that Mipr = 1
'2_ . = 1 = — 3 =
Ei Ri 0 we have Ei Vbi ay # 0, and Ei+r 0. So (4.2) tells us that

- s, < 0., And since

0 0 d(2¢;)
s = 0 d(—ZSi) 0 # 0.
d(2g}) 0 0
Conversely assume sj = 0 for some j. Since by definition both R.j and Rj+r
cannot be zero and, uj R.j and uj+r Rj+r must be zero, we have either uj+r or

uj = 0. But (4.4) with Sj = 0 implies uj+r = uj = 0. Then in the determinant (4.2)
the jth row and the (j + @Fh row are linearly dependent. Hence S = 0.

Theorem 2: A control is singular in the sense of Haynes-Hermes if and only if the
corresponding extremaloid in the Berkowitz formulation of the control problem as a

Lagrange problem is singular in the calculus of variations sense,

10



5. Dunn Definition of a singular arc.

Recentiy Dunn published a classification of controls that are obtained from
Pontryagin's Principle . ([7]). We shall state here the restriction of his definition
to the case of piecewise continuous controls. In order to simplify the expressions

we make the following slight change of notation: let x = (xo, X veay xn) where

1!

Xa = fo(x,u-,t).

Definition 3: A pair of functions (x,)A) given on an interval I is said to be an

extremaloid of the maximum principle on I if and only if (a) the trajectory

x = x(t) is generated by an admissible control u = u(t) (i.e., piecewise continuous
with range in U) (b) A = A(t) satisfy A'= - Hx(x,l,u). (c¢) (u,x,)) satisfy the

maximum principle on I.

Let C denote the class of functioms ¢ : Ek x Ek x E into EX satisfying

H(x,A,t,c(x,A,t)) = sup H(x,r,t,u) (5.1)
uel
identically on Ek X Ek X E1 and let D denote the corresponding class of systems

of differential equations

Al = - Hx(x,k,t,c(x,X,t))
(5.2)
x' = Hx(x,A,t,c(x,A,t))
If N is a neighborhood ia the (x,),t) space, let C(N) denote the class of

functions ¢ : N > E satisfying (5.1).and let D(N) denote the corresponding class

of ordinary differential equations defined on N.

Definition 4: A point p : (x,A,t) € Ek x Ek x E! is said to be a singular point

if every neighborhood N of p contains a point q (possibly p itself) at which
two or more members of the class D(N) are distinct. Conversely, if there is

some neighhorhood N* of {p} such that D(N*) consists of exactly one member, then

11



p is said to be a regular point. The set Q of all singular points is called the
singular set. The set R of all regular points is called the regular set.

As an immediate consequence of the above definition we have

Theorem 3: If P is non-empty then

¢

Ek x Ek x E

(a) QNR

1

() QUR
(c) R is open
(d) Q is closed

(This is theorem 2 in Dunn's paper.)

Definition 5: An extremal (x,)) defined on some interval is said to be regular

if and only if it lies entirely in the regular set R.

Definition 6: An extremaloid (x,A) on I is said to be singular if and only if the

set a = {t | telI, (x(£), (t,t£)) & Q) contains an open subinterval.

So we have three categories of extremaloids
(1) Regular, those for which o = @.
(2) Extremaloids where o # @ and o contains a finite number of points.

(3) Singular extremaloids where o # @ and (t', t") C o for some t' < t'".

The question naturally arises how Dunn's scheme of classifying extremaloids
is related to the other methods. First we consider the case of the linear
optimization problem with a closed right parallelepiped as control region. There,
the Hamiltonian is linear in u. This is the problem defined in section 2 and

discussed as a Lagrange problem in sections 3 and 4.

Theorem 4: TFor the linear control problem of section 2,. we have CI' C R where T

is defined in definition 2 of section 3 and where R is Dunn's regular set.

12



Proof: CI = {(A,x,t) | BL(A,x,t) $0, =1, 2, ..., v}. If (x,A,t) € CT, then,

(3.1) defines a unique system of canonical equations and (x,A,t) e R,
Corollary: Q<< I where Q is Dunn's singular set.
Proof: Since Cl'«= R, we have CR C.T and the result follows from Q = CR.

Remark: The corollary states that if an extremaloid is singular in Dunn's sense,

then it is also singular in the Haynes-Hermes sense.

It is shown by Dunn that the converse of theorem 4 is not true. This is
seen by having B(x,t) e 0 in the vector equation x'= A(x,t) + B(x,t)u on some
neighborhood N of the (x,t) space. Then it would be true that si(A,x,t) =
Ao Bi(x,t) = 0 on Ek x N, so Ek x NCT. But the canonical equations woyld be
uniquely given by

x' = A(x,t)
./\,'= - (aA(x,c)) T,
ox
on N, hence Ek x NC. R, so the converse of theorem 4 does not hold in this case.
However notice that for this example the system x'= A(x,t) + B(t,x)u is no longer
underdetermined on N.

If we consider linear optimization problems which are underdetermined with

respect to each u, for 1 =1, 2, ,,.,, r for every (x,t), then while the converse

i
of Theorem (4) i1s not generally true we do have the following theorem:

Theorem 5: If in the linear optimization problem we have Ag # 0 for all (x,t),

T
_ bo(x,t)

and the columns of the matrix B(x,t) = are all not zero, then I' = Q.
B(x,t)

Proof: Suppose (x,A,t) € I'. This implies that for some i, 1 = 1,2,...,r, si(k,k,t) = 0.
n
Since Z
i=0

bij(x,t) Aj = si(x,A,t) = (0, the Hamiltonian is independent of uy

13



hence any value of u, satisfies the Pontryagin principle.. But by hypothesis

i

(bi1’ b, 5 ceey bin) # 0 for all (x,t). So if bi

iy # 0 for some § = 0, 1, 2, seu, T

3
the system x'=-HA is not unique because the jth equation has an undetermined term
uj in it. So the canonical equations are not uniquely determined at (X,x,t),

hence (A,x,t) £ Q.

Corollary 1: R = Cr.

Corollary 2: With the hypothesis of theorem (5), if an extremaloid of the linear
optimization problem is singular in the Haynes-Hermes sense, then it is singular
in the Dunn sense.

For the general control problem, Dunn ([7]) has shown that under certain
conditions an extremal which is regular in the calculus of variations sense is

regular in the Dunn sense. His theorem is

Theorem 6: Every extremal {x,A} which is regular in the calculus of variations
sense is regular in the Dunn sense, if it satisfies a neighborhood form of the
Weierstrass condition, i.e., the function ¢ = c(;,i,t) which satisfies
H(;,i,t,c(;,i,t)) = sup H(;,i,t,u) is such that ¢ € C(N) for some neighborhood
N of (;,;).and has c:ﬁ:liLous first partials on N.

Clearly the converse of theorem 6 need not be true. This follows since an
extremal which is non-singular in the Dunn senge must satisfy the Pontryagin
principle, that is H(x,A,u,t) is a maximum with respect to u. However the
matrix Huu, if it exists at all, is by necessity only negative semi-definite at

the maximum. Hence Huu 1s possibly singular at the maximum.

14



CONCLUDING REMARKS

We have shown for the linear optimization problem the equivalence of a singular
extremal in the Haynes-Hermes sense and a singular extremaloid of the equivalent
Lagrange problem formed either by a transformation of the type discussed by Park
or the introduction of slack variables. Also we have shown that the Dunn definition
of singularity impljes the Haynes-Hermes definition, and the converse is true if
the system is underdetermined with respect to each control variable for all (x,t).
For the nonlinear case, if an extremal of a Lagrange problem is nonsingular and it
satisfies a neighborhood form of the Welerstrass condition, then it is regular in

the Dunn sense. But the converse is, in general, not true.

15
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